Some Uniqueness Results for Dynamical Horizons
نویسندگان
چکیده
We first show that the intrinsic, geometrical structure of a dynamical horizon is unique. A number of physically interesting constraints are then established on the location of trapped and marginally trapped surfaces in the vicinity of any dynamical horizon. These restrictions are used to prove several uniqueness theorems for dynamical horizons. Ramifications of some of these results to numerical simulations of black hole spacetimes are discussed. Finally several expectations on the interplay between isometries and dynamical horizons are shown to be borne out.
منابع مشابه
v 1 9 O ct 1 99 6 Uniqueness of stationary , electro – vacuum black holes revisited
In recent years there has been some progress in the understanding of the global structure of stationary black hole space–times. In this paper we review some new results concerning the structure of stationary black hole space–times. In particular we prove a corrected version of the “black hole rigidity theorem”, and we prove a uniqueness theorem for static black holes with degenerate connected h...
متن کاملSome difference results on Hayman conjecture and uniqueness
In this paper, we show that for any finite order entire function $f(z)$, the function of the form $f(z)^{n}[f(z+c)-f(z)]^{s}$ has no nonzero finite Picard exceptional value for all nonnegative integers $n, s$ satisfying $ngeq 3$, which can be viewed as a different result on Hayman conjecture. We also obtain some uniqueness theorems for difference polynomials of entire functions sharing one comm...
متن کاملSome New Uniqueness Results of Solutions for Fractional Volterra-Fredholm Integro-Differential Equations
This paper establishes a study on some important latest innovations in the uniqueness of solution for Caputo fractional Volterra-Fredholm integro-differential equations. To apply this, the study uses Banach contraction principle and Bihari's inequality. A wider applicability of these techniques are based on their reliability and reduction in the size of the mathematical work.
متن کاملSome New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations
This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...
متن کاملThe Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population
A mathematical model describing the dynamics of a delayed stage structure prey - predator system with prey refuge is considered. The existence, uniqueness and bounded- ness of the solution are discussed. All the feasibl e equilibrium points are determined. The stability analysis of them are investigated. By employ ing the time delay as the bifurcation parame...
متن کامل